Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 41(1): 2335199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38565204

RESUMO

PURPOSE: c-Jun N-terminal kinases (JNKs) comprise a subfamily of mitogen-activated protein kinases (MAPKs). The JNK group is known to be activated by a variety of stimuli. However, the molecular mechanism underlying heat-induced JNK activation is largely unknown. The aim of this study was to clarify how JNK activity is stimulated by heat. METHODS AND MATERIALS: The expression levels of various MAPK members in HeLa cells, with or without hyperthermia treatment, were evaluated via western blotting. The kinase activity of MAPK members was assessed through in vitro kinase assays. Cell death was assessed in the absence or presence of siRNAs targeting MAPK-related members. RESULTS: Hyperthermia decreased the levels of MAP3Ks, such as ASK1 and MLK3 which are JNK kinase kinase members, but not those of the downstream MAP2K/SEK1 and MAPK/JNK. Despite the reduced or transient phosphorylation of ASK1, MLK3, or SEK1, downstream JNK was phosphorylated in a temperature-dependent manner. In vitro kinase assays demonstrated that heat did not directly stimulate SEK1 or JNK. However, the expression levels of DUSP16, a JNK phosphatase, were decreased upon hyperthermia treatment. DUSP16 knockdown enhanced the heat-induced activation of ASK1-SEK1-JNK pathway and apoptosis. CONCLUSION: JNK was activated in a temperature-dependent manner despite reduced or transient phosphorylation of the upstream MAP3K and MAP2K. Hyperthermia-induced degradation of DUSP16 may induce activation of the ASK1-SEK1-JNK pathway and subsequent apoptosis.


Assuntos
Hipertermia Induzida , Sistema de Sinalização das MAP Quinases , Humanos , Células HeLa , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Apoptose/fisiologia
2.
Phytomedicine ; 123: 155167, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952408

RESUMO

BACKGROUND: Protopanaxatriol (PPT) is an important ginsenoside produced by ginseng, a tonic plant used in many areas. PPT has beneficial effects against many disease states including inflammation, diabetes, and cancer. However, PPT's protective effects on skin integrity have been rarely studied. Previously, we reported that PPT can maintain skin moisture through activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. However, the cellular targets for enhancing skin moisturizing effects via PPT are still unknown. PURPOSE: We wanted to identify the upstream targets of PPT on upregulating moisturizing factor (HAS-2) expression. STUDY DESIGN: We investigated which upstream proteins can be directly stimulated by PPT to modulate NF-κB, MAPKs and other signaling cascades. Then, the targeted proteins were overexpressed to check the relationship with HAS-2. Next, the cellular thermal shift assay (CETSA) was conducted to check the relationship between targeted proteins and PPT. METHODS: A human keratinocyte HaCaT were employed to measure the levels of moisturizing factors and the signaling proteins activated by PPT. Transfection conditions were established with DNA constructs expressing epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) and their mutants prepared by site-directed mutagenesis. Further investigation on molecular mechanisms was conducted by RT-PCR, luciferase reporter gene assay, CETSA, or Western blot. RESULTS: We found that PPT can activate the phosphorylation of EGFR and HER2. These stimulations caused Src phosphorylation, which resulted in the activation of phosphoinositide 3-kinases (PI3K)/pyruvate dehydrogenase kinase 1 (PDK1)/protein kinase B (AKT)/NF-κB and MAPKs signaling cascades. Additionally, EGFR and HER2 activation resulted in phosphorylation of signal transducer and activator of transcription 3 (STAT3) and calcium/calmodulin-dependent protein kinase II (CaMKII). This induced the AMP-activated protein kinase alpha (AMPKα) signaling pathway. Additionally, PPT blocked peroxisome proliferator activated receptor gamma (PPARγ), which also contributed to the phosphorylation of Src. CONCLUSION: Overall, we first found that PPT offers excellent protection of the skin barrier and hydrogen supply in keratinocytes. Moreover, growth factor receptors such as EGFR and HER2 were revealed to be central enzymes to be directly targeted by PPT. These results suggest a potentially valuable role as a cosmetic ingredient.


Assuntos
NF-kappa B , Sapogeninas , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Sapogeninas/farmacologia , Fosforilação , Queratinócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores ErbB/metabolismo
3.
J Med Food ; 27(1): 72-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976106

RESUMO

Hippophae rhamnoides exhibit a wide variety of medicinal and pharmacological effects. The present study aims to determine the role of ethanol extract of H. rhamnoides on oleic acid (OA)-induced acute respiratory distress syndrome (ARDS) in rats. Male rats were randomly divided into the following groups: (I) Control, (II) OA, and (III) OA+H. rhamnoides. H. rhamnoides extract (500 mg/kg) was given orally for 2 weeks before OA in Group III. Levels of total antioxidant capacity, total oxidant status (TOS), myeloperoxidase (MPO), mitogen-activated protein kinase (MAPK), acetylcholinesterase (AChE), and angiotensin-converting enzyme (ACE) were quantified by enzyme-linked immunosorbent assay (ELISA). Real time quantitative polymerase chain reaction was utilized to evaluate the expression of nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and matrix metalloproteinase 2 (MMP2). Also, Caspase-3 immunostaining and expression were performed to evaluate apoptosis. Compared with the OA group, there was a significantly decrease in the levels of MPO, TOS, MAPK, and ACE and in the expression of NF-κB, TNF-α, IL-6, MMP2, and Caspase-3 in the H. rhamnoides administration group. Moreover, the activity of AChE and level of TAS were substantially higher in the H. rhamnoides administration compared with the OA group. The findings in the study suggest that the protective effect of H. rhamnoides pretreatment may act through inhibition of the ACE activity, releasing AChE, regulation of inflammatory cytokine levels, and suppression of apoptotic process in ARDS.


Assuntos
Hippophae , Síndrome do Desconforto Respiratório , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Metaloproteinase 2 da Matriz , Acetilcolinesterase , Ácido Oleico , Hippophae/metabolismo , Caspase 3 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Interleucina-6/genética , Angiotensinas
4.
J Ethnopharmacol ; 321: 117501, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38012970

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Psoralea corylifolia L. (PC) is widely used in traditional medicines to treat inflammatory and infectious diseases. Isobavachin (IBC) is a bioavailable prenylated flavonoid derived from PC that has various biological properties. However, little information is available on its anti-inflammatory effects and mechanisms of action. AIM OF THE STUDY: In this study, we aimed to determine the anti-inflammatory effects of IBC in vitro and in vivo by conducting a mechanistic study using murine macrophages. MATERIALS AND METHODS: We evaluated the modulatory effects of IBC on the production of pro-inflammatory cytokines and mediators in murine macrophages. In addition, we examined whether IBC inhibits lipopolysaccharide (LPS)-induced inflammatory responses in a zebrafish model. Alterations in inflammatory response-associated genes and proteins were determined using quantitative reverse transcriptional polymerase chain reaction (RT-qPCR) and Western blotting analysis. RESULTS: IBC markedly reduced the overproduction of inflammatory mediators, pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear translocation of nuclear factor-kappa B (NF-κB) in macrophages induced by lipopolysaccharides (LPS). In addition, excessive NO, ROS, and neutrophil level induced by LPS, were suppressed by IBC treatment in a zebrafish inflammation model. CONCLUSIONS: Collectively, bioavailable IBC inhibited on the inflammatory responses by LPS via MAPK and NF-κB signaling pathways in vitro and in vivo, suggesting that it may be a potential modulatory agent against inflammatory disorders.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Psoralea , Animais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Peixe-Zebra , Psoralea/metabolismo , Transdução de Sinais , Flavonoides/farmacologia , Citocinas/metabolismo , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo
5.
Food Funct ; 15(2): 823-837, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38131381

RESUMO

The use of non-steroidal anti-inflammatory drugs (NSAIDs) has negative effects on the gastrointestinal tract, but the proton pump inhibitors currently in use only protect against gastrointestinal disease and may even make NSAID-induced enteropathy worse. Therefore, new approaches to treating enteropathy are required. This study aimed to investigate the protective effect of wheat peptides (WPs) against NSAID-induced intestinal damage in mice and their mechanism. Here, an in vivo mouse model was built to investigate the protective and reparative effects of different concentrations of WPs on NSAID-induced intestinal injury. WPs ameliorated NSAID-induced weight loss and small intestinal tissue damage in mice. WP treatment inhibited NSAID-induced injury leading to increased levels of oxidative stress and expression levels of inflammatory factors. WPs protected and repaired the integrity and permeability injury of the intestinal tight junction induced by NSAIDs. An in vitro Caco-2 cell model was built with lipopolysaccharide (LPS). WP pretreatment inhibited LPS-induced changes in the Caco-2 cell permeability and elevated the levels of oxidative stress. WPs inhibited LPS-induced phosphorylation of NF-κB p65 and mitogen-activated protein kinase (MAPK) signaling pathways and reduced the expression of inflammatory factors. In addition, WPs increased tight junction protein expression, which contributed to improved intestinal epithelial dysfunction. Our results suggest that WPs can ameliorate NSAID-induced impairment of intestinal barrier functional integrity by improving intestinal oxidative stress levels and reducing inflammatory factor expression through inhibition of NF-κB p65 and MAPK signaling pathway activation. WPs can therefore be used as potential dietary supplements to reduce NSAID-induced injury of the intestine.


Assuntos
Gastroenteropatias , Enteropatias , Humanos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Triticum/metabolismo , Células CACO-2 , Anti-Inflamatórios não Esteroides/farmacologia , Lipopolissacarídeos/farmacologia , Enteropatias/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Mucosa Intestinal/metabolismo
6.
J Ethnopharmacol ; 322: 117547, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135231

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Maimendong and Qianjinweijing Tang (Jin formula) is a traditional Chinese medicine formula that has been proven effective in the treatment of lung cancer in long-term clinical practice. AIM OF THE STUDY: To evaluate the anti-tumor effects of Jin formula combined with cisplatin (JIN + DDP) in vivo and in vitro, as well as to explore the role of long non-coding RNA (lncRNA) in the anti-lung cancer mechanism of its action. MATERIALS AND METHODS: A Lewis lung cancer model was established in C57 BL/6 mice to study the in vivo anti-tumor effect of Jin formula combined with cisplatin. TUNEL staining and western blot were applied to study the effects of Jin formula combined cisplatin on apoptosis. The in vitro anti-cancer function of Jin formula combined with cisplatin was explored by cell viability assay, flow cytometry, wound healing assay and transwell assay. The changes in lncRNA expression profiles were determined by lncRNA microarray, and the differentially expressed lncRNA-p21 was verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. The expression differences of lncRNA-p21 in tumor and normal tissues were analyzed by bioinformatics, and the expression differences of lncRNA-p21 in tumor cells and normal cells were detected by qRT-PCR. The role of lncRNA-p21 in the anti-cancer effect of Jin formula combined cisplatin was investigated by knockdown or overexpression of lncRNA-p21 and a series of cell experiments. The expression of MAPK pathway-related proteins was analyzed by western blot. RESULTS: Jin formula combined with cisplatin (JIN + DDP) can suppress tumor growth and promote apoptosis in Lewis lung cancer mouse model. LncRNA-p21 was significantly up-regulated in the JIN and JIN + DDP groups, and the expression of lncRNA-p21 in lung cancer tissues and cells was lower than that in normal tissues and cells. In vitro, JIN + DDP significantly induced apoptosis and inhibited the proliferation, migration, and invasion of H460 and H1650 lung cancer cells. The above effects can be enhanced by the overexpression of lncRNA-p21 and eliminated by knock-down of lncRNA-p21. Further studies revealed that JIN + DDP inhibited the expression of mitogen-activated protein kinase (MAPK) pathway-related proteins, whereas knock-down of lncRNA-p21 abrogated the inhibition of the MAPK signaling pathway. CONCLUSIONS: This study showed that Jin formula combined with cisplatin could effectively inhibit the progression of lung cancer partially through targeting lncRNA-p21.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Apoptose , MicroRNAs/genética
7.
Inflammopharmacology ; 31(6): 3063-3079, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37934384

RESUMO

OBJECTIVE: Bronchoconstriction, along with inflammation and hyperresponsiveness is the characteristic feature associated with asthma, contributing to variable airflow obstruction, which manifests shortness of breath, cough and wheeze, etc. Histone deacetylases 8 (HDAC8) is the member of class I HDAC family and known to regulate microtubule integrity and muscle contraction. Therefore, we aimed to investigate the effects of HDAC8 inhibition in murine model of asthma using Pan-HDAC inhibitor curcumin (CUR) and HDAC8-specific inhibitor PCI-34051 (PCI), alone and in combination. MATERIALS AND METHODS: To develop asthmatic mouse model, Balb/c mice were sensitized and challenged with ovalbumin (OVA). CUR (10 mg/kg, pre, post, alone and combined treatment) and PCI (0.5 mg/kg), were administered through intranasal (i.n) route, an hour before OVA aerosol challenge. Effects of HDAC8 inhibition by CUR and PCI pretreatments were evaluated in terms of inflammation, oxidative stress and fibrosis markers. Efficacy of curcumin post-treatment (CUR(p)) was also evaluated simultaneously. RESULTS: Inflammatory cell recruitment, oxidative stress (reactive oxygen species, nitric oxide), histamine and Immunoglobulin E (IgE) levels and expression of fibrosis markers including hydroxyproline, matrix metalloproteinases-9 and alpha smooth muscle actin (MMP-9 and α-SMA) were significantly reduced by CUR, CUR(p), PCI-alone and combined treatments. Protein expressions of HDAC8, Nuclear factor-κB (NF-κB) accompanied by MAPKs (mitogen-activated protein kinases) were significantly reduced by the treatments. Structural alterations were examined by histopathological analysis and linked with the fibrotic changes. CONCLUSIONS: Present study indicates protective effects of HDAC8 inhibition in asthma using HDAC8 using CUR and PCI alone or in combination, attenuates airway inflammation, fibrosis and remodeling; hence, bronchoconstriction was accompanied through modulation of MAP kinase pathway.


Assuntos
Asma , Curcumina , Animais , Camundongos , Curcumina/farmacologia , Asma/tratamento farmacológico , Pulmão , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibrose , Camundongos Endogâmicos BALB C , Ovalbumina/farmacologia , Modelos Animais de Doenças
8.
Inflammopharmacology ; 31(5): 2201-2212, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37498375

RESUMO

Curcumin (diferuloylmethane) is a herbal remedy which possesses numerous biological attributes including anti-inflammatory, anti-oxidant and anti-cancer properties. Curcumin has been shown to impact a number of signaling pathways including nuclear factor kappa B (NF-KB), reactive oxygen species (ROS), Wingless/Integrated (Wnt), Janus kinase-signal transducer and activator of mitogen-activated protein kinase (MAPK) and transcription (JAK/STAT). P38 belongs to the MAPKs, is known as a stress-activated MAPK and is involved in diverse biological responses. P38 is activated in various signaling cascades. P38 plays a role in inflammation, cell differentiation, proliferation, motility and survival. This cascade can serve as a therapeutic target in many disorders. Extensive evidence confirms that curcumin impacts the P38 MAPK signaling pathway, through which it exerts anti-inflammatory, neuroprotective, and apoptotic effects. Hence, curcumin can positively affect inflammatory disorders and cancers, as well as to increase glucose uptake in cells. This review discusses the pharmacological and therapeutic effects of curcumin as effected through p38 MAPK.


Assuntos
Curcumina , Curcumina/farmacologia , Curcumina/uso terapêutico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Janus Quinases/metabolismo , Sistema de Sinalização das MAP Quinases
9.
J Cell Mol Med ; 27(14): 2071-2081, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337779

RESUMO

Schisandra chinensis is a medicinal plant used to treat various diseases. Extracts from the leaves or fruits of S. chinensis and their components are used in osteoarthritis (OA). The OA inhibitory effect of schisandrol A, one of its components, has been previously confirmed. We aimed to confirm the OA inhibitory effect of Schisandra (including components like schisandrol A) to identify why the inhibitory effect of the Schisandra extract is better. First, we investigated the effects of the Schisandra extract on OA as a potential therapeutic. Experimental OA was induced in a mouse model via destabilized medial meniscus surgery. The animals were orally administered the Schisandra extract; the inhibition of cartilage destruction was confirmed using histological analysis. In vitro analysis showed that the Schisandra extract attenuated osteoarthritic cartilage destruction by regulating IL-1ß-induced MMP3 and COX-2 levels. The Schisandra extract inhibited IL-1ß-induced degradation of IκB (NF-κB pathway) and IL-1ß-induced phosphorylation of p38 and JNK (mitogen-activated protein kinase (MAPK) pathway). RNA-sequencing analysis showed that the Schisandra extract decreased the expression of IL-1ß-induced MAPK and NF-κB signalling pathway-related genes more than schisandrol A alone. Therefore, Schisandra extract may be more effective than schisandrol A in preventing OA progression by regulating MAPK and NF-κB signalling.


Assuntos
Osteoartrite , Schisandra , Camundongos , Animais , NF-kappa B/metabolismo , Condrócitos/metabolismo , Osteoartrite/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Extratos Vegetais/uso terapêutico , Interleucina-1beta/metabolismo , Células Cultivadas
10.
Phytomedicine ; 115: 154821, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119761

RESUMO

BACKGROUND: Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE: Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS: A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS: From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION: Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.


Assuntos
Antineoplásicos , Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Fosforilação , Antineoplásicos/farmacologia
11.
J Exp Bot ; 74(14): 4208-4224, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37086267

RESUMO

Potato (Solanum tuberosum) is an important crop globally and is grown across many regions in China, where it ranks fourth in the list of staple foods. However, its production and quality are severely affected by bacterial wilt caused by Ralstonia solanacearum. In this study, we identified StTOPP6, which belongs to the type one protein phosphatase (TOPP) family, and found that transient knock down of StTOPP6 in potato increased resistance against R. solanacearum. RNA-seq analysis showed that knock down of StTOPP6 activated immune responses, and this defense activation partly depended on the mitogen-activated protein kinase (MAPK) signal pathway. StTOPP6 inhibited the expression of StMAPK3, while overexpression of StMAPK3 enhanced resistance to R. solanacearum, supporting the negative role of StTOPP6 in plant immunity. Consistent with the results of knock down of StTOPP6, overexpressing the phosphatase-dead mutation StTOPP6m also attenuated infection and up-regulated MAPK3, showing that StTOPP6 activity is required for disease. Furthermore, we found that StTOPP6 affected the StMAPK3-mediated downstream defense pathway, eventually suppressing the accumulation of reactive oxygen species (ROS). Consistent with these findings, plants with knock down of StTOPP6, overexpression of StTOPP6m, and overexpression of StMAPK3 all displayed ROS accumulation and enhanced resistance to R. solanacearum. Taken together, the findings of our study demonstrate that StTOPP6 negatively regulates resistance to bacterial wilt by affecting the MAPK3-mediated pathway.


Assuntos
Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ralstonia solanacearum/fisiologia , Transdução de Sinais , Fosfoproteínas Fosfatases/metabolismo , Doenças das Plantas/microbiologia , Resistência à Doença/genética
12.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771069

RESUMO

Phaseolus angularis L. is widely cultivated and is considered a superfood because of its nutritious protein and starch contents. Nevertheless, P. angularis's effects on skin photoaging are unknown. The aim of this study was to research the effects of P. angularis seed extract (PASE) on photoaging in human keratinocytes (HaCaT) damaged by UVB radiation so as to find out whether PASE can be used as an effective anti-photoaging ingredient in cosmetic products. The antioxidant activities were assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radical scavenging, and reactive oxygen species (ROS) assays. Enzyme-linked immunosorbent assay (ELISA) analysis was used to determine the change in matrix metalloproteinase (MMP)-1, and MMP-3. The protein levels of mitogen-activated protein kinase (MAPK)/activator protein (AP)-1, transforming growth factor beta (TGF)-ß/suppressor of mothers against decapentaplegic (Smad), and NF-E2-related factor (Nrf)2/antioxidant response element (ARE) were measured by western blot. As a result, PASE increased DPPH and ABTS antioxidant activities in a dose-dependent manner. Additionally, PASE treatment (100 µg/mL) significantly reverted the damage induced by UVB (125 mJ/cm2) irradiation by downregulating ROS, matrix metalloproteinase (MMP)-1, and MMP-3 secretion and expression and increasing procollagen type I production. To suppress MMP-1 and MMP-3 secretion, PASE significantly decreased UVB-induced p38 and JNK phosphorylation and phosphorylated c-Fos and c-Jun nuclear translocation. PASE promoted collagen I production by inhibiting UVB-induced TGF-ß activation and Smad7 overexpression; antioxidant properties also arose from the stimulation of the Nrf2-dependent expression of the antioxidant enzymes heme oxygenase (HO)-1 and quinone oxidoreductase (NQO)-1. Our data demonstrated that PASE has the potential to prevent ROS formation induced by UVB exposure by targeting specific pathways. Thus, PASE might be a potent anti-photoaging component to exploit in developing anti-aging products.


Assuntos
Phaseolus , Envelhecimento da Pele , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Phaseolus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Queratinócitos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/química , Raios Ultravioleta/efeitos adversos , Fibroblastos
13.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771432

RESUMO

Ultraviolet (UV) B exposure induces wrinkle formation, collagen fiber breakdown, and transepidermal water loss (TEWL). UVB irradiation induces the expression of mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and nuclear factor kappa B (NF-κB), which affect the expression of matrix metalloproteinases (MMP). We confirmed the effects of Latilactobacillus sakei wikim0066 (wikim0066) on UVB-irradiated Hs68 cells and HR-1 hairless mice cells. wikim0066 restored the production of type I procollagen by regulating the expression of MMP-1 and -3, MAPK, AP-1, and NF-κB in UVB-irradiated Hs68 cells and HR-1 mice. Oral administration of wikim0066 alleviates wrinkle formation, epidermal thickness, and TEWL in UVB-irradiated HR-1 hairless mice. These results indicated that wikim0066 has the potential to prevent UVB-induced wrinkle formation.


Assuntos
Latilactobacillus sakei , Envelhecimento da Pele , Animais , Camundongos , Camundongos Pelados , NF-kappa B/metabolismo , Fator de Transcrição AP-1/metabolismo , Pele/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Raios Ultravioleta/efeitos adversos , Extratos Vegetais/farmacologia
14.
Food Funct ; 14(4): 1971-1988, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723106

RESUMO

Oxidative stress and inflammation play important roles in the development of diabetes mellitus. p-Synephrine, the primary pharmacologically active protoalkaloid in Citrus species, has been popularly consumed as a dietary supplement for weight loss management. However, the effects of p-synephrine on diabetes mellitus and the action mechanisms have not been clearly elucidated. In this study, the in vitro antioxidant effects of p-synephrine were evaluated. The data showed that p-synephrine treatment exhibited significant scavenging effects against DPPH, ABTS and OH radicals and showed high reducing power. Diabetic mice were developed by alloxan injection, followed by p-synephrine administration to investigate its hypoglycemic effects in vivo. The results showed that p-synephrine intervention significantly prevented alloxan-induced alteration in body weight, organ indexes, serum uric acid content and serum creatinine content. Meanwhile, p-synephrine application significantly improved the lipid profiles, superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) contents in the serum and kidneys of diabetic mice and reduced the malondialdehyde (MDA) content in the serum of diabetic mice. Further assays suggested that p-synephrine treatment improved alloxan-induced decreases of glucose tolerance and insulin sensitivity. Also, p-synephrine supplementation altered histopathological changes in the kidneys and interscapular brown adipose tissues in diabetic mice. In addition, p-synephrine administration inhibited renal inflammation through suppressing tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) gene expression levels, as well as CD45 expression levels. The anti-inflammatory effects were probably involved in the regulation of nuclear factor-κB (NF-κB) activation and mitogen-activated protein kinase (MAPK) phosphorylation. In conclusion, p-synephrine application significantly ameliorated alloxan-induced diabetes mellitus by inhibiting oxidative stress via suppressing the NF-κB and MAPK pathways.


Assuntos
Diabetes Mellitus Experimental , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aloxano , Sinefrina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ácido Úrico , Estresse Oxidativo , Antioxidantes/farmacologia , Inflamação/tratamento farmacológico , Glutationa/metabolismo , Superóxido Dismutase/metabolismo
15.
Phytomedicine ; 111: 154646, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36645975

RESUMO

BACKGROUND: Obese asthma is one of the important asthma phenotypes that have received wide attention in recent years. Excessive oxidative stress and different inflammatory endotypes may be important reasons for the complex symptoms, frequent aggravation, and resistance to traditional treatments of obese asthma. Apigenin (API), is a flavonoid natural small molecule compound with good anti-inflammatory and antioxidant activity in various diseases and proved to have the potential efficacy to combat obese asthma. METHODS: In vivo, this study fed C57BL/6 J mice with high-fat diets(HFD)for 12 weeks and then stimulated them with OVA for 6 weeks to establish a model of chronic obese asthma, while different doses of oral API or dexamethasone were used for therapeutic interventions. In vitro, this study used HDM to stimulate human bronchial cells (HBEs) to establish the model and intervened with API or Selonsertib (SEL). RESULTS: This study clarified that OVAinduced a type of mixed granulocytic asthma with elevated neutrophils and eosinophils in obese male mice fed with long-term HFD, which also exhibited mixed TH17/TH1/TH2 inflammation. Apigenin effectively suppressed this complex inflammation and acted as a regulator of immune homeostasis. Meanwhile, apigenin reduced AHR, inflammatory cell infiltration, airway epithelial cell apoptosis, airway collagen deposition, and lung oxidative stress via the ROS-ASK1-MAPK pathway in an obese asthma mouse model. In vitro, this study found that apigenin altered the binding status of TRAF6 to ASK1, inhibited ASK1 phosphorylation, and protected against ubiquitin-dependent degradation of ASK1, suggesting that ROS-activated ASK1 may be an important target for apigenin to exert anti-inflammatory and anti-apoptotic effects. To further verify the intervention mechanism, this study clarified that apigenin improved cell viability and mitochondrial function and inhibited apoptosis by interfering with the ROS-ASK1-MAPK pathway. CONCLUSIONS: This study demonstrates for the first time the therapeutic effect of apigenin in chronic obese asthma and further clarifies its potential therapeutic targets. In addition, this study clarifies the specificity of chronic obese asthma and provides new options for its treatment.


Assuntos
Apigenina , Asma , Animais , Humanos , Masculino , Camundongos , Apigenina/farmacologia , Apoptose , Asma/metabolismo , Células Epiteliais/metabolismo , Homeostase , Inflamação/metabolismo , Pulmão , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
16.
J Ethnopharmacol ; 306: 116155, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36634726

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tibetan medicine Qi-Sai-Er-Sang-Dang-Song Decoction(QSD, ཆུ་སེར་སེང་ལྡེང་སུམ་ཐང་།)is a traditional Tibetan medical formulation with demonstrated clinical benefits in atopic dermatitis (AD). However, its potential mechanism and molecular targets remain to be elucidated. AIM OF THE STUDY: This study aims to explore the activity and mechanism of QSD on AD in multiple dimensions by combining in vitro and in vivo experiments with network pharmacology. MATERIALS AND METHODS: The AD effect of QSD was investigated by evaluating the levels of nitric oxide (NO) and interleukin-6 (IL-6) in the lipopolysaccharide (LPS) stimulated RAW264.7 cells. AD-like skin lesions in female BALB/c mice were induced by 2,4-dinitrochlorobenzene (DNCB). QSD or dexamethasone (positive control) were gavagely administered daily for 15 consecutive days. The body weight and skin lesion severity were recorded throughout the study. Enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) analysis were used to illuminate the molecular targets associated with the anti-AD effects of QSD. Meanwhile, the ingredients of QSD in the blood were revealed and analyzed by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) method. Network pharmacology was used to predict the targets and mechanism of active ingredient therapy for AD. In addition, the network pharmacology outcomes were further verified by molecular docking. RESULT: After treatment with QSD, the levels of NO and IL-6 were decreased in the cell supernatant. Herein, QSD markedly decreased the eosinophil and mast cells infiltration in the dorsal skin of the 2,4-dinitrochlorobenzene. Moreover, QSD reconstructed the epidermal barrier by increasing the content of collagen fibers and changing the arrangement of DNCB-treated mice. QSD not only inhibited the levels of tumor necrosis factor-α (TNF-α) and interleukin-12 (IL-12) but also inhibited phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) proteins in the dorsal skin. Four active ingredients were identified through UPLC-Q-TOF/MS, including (-)-epicatechin, kaempferol-7-O-glucoside, cassiaside, and questin. After the network pharmacological analysis, six core targets of QSD closely related to AD were obtained, including TNF-α, IL-6, Caspase-3 (CASP3), Epidermal growth factor (EGFR), Peroxisome proliferator-activated receptor gamma (PPARG), and Neurotrophic Receptor Tyrosine Kinase 1 (NTRK1). Meanwhile, through Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, the Mitogen-activated protein kinase (MAPK) signaling pathway occupies an important position in the QSD treatment of AD. The molecular docking results showed that the six core targets are stable in binding to the four active ingredients as indicated by the molecular docking results. CONCLUSIONS: The anti-AD effect of QSD might be related to the reconstruction of the epidermal barrier and inhibition of inflammation, which regulated the MAPK pathway. Hence, it provided a promising idea for the study of Tibetan medicine prescriptions for the treatment of AD.


Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Dermatopatias , Feminino , Animais , Camundongos , Dinitroclorobenzeno , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Medicina Tradicional Tibetana , Simulação de Acoplamento Molecular , Qi , Anti-Inflamatórios/farmacologia , Dermatite Atópica/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dermatopatias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia
17.
Biomed Pharmacother ; 159: 114288, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682245

RESUMO

Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.


Assuntos
Antineoplásicos , Glioma , Humanos , Polifenóis/farmacologia , Polifenóis/análise , Antioxidantes/química , Plantas Tolerantes a Sal/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteômica , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/farmacologia , Fenóis/análise , Flavonoides/farmacologia , Flavonoides/análise , Transdução de Sinais , Proliferação de Células , Antineoplásicos/farmacologia , Glioma/tratamento farmacológico
18.
J Ethnopharmacol ; 307: 116182, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36706935

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The seeds of Entada phaseoloides (Linn.) Merr. commonly named "Ke-teng-zi" is a traditional Chinese folk medicine and reported to treat dermatitis, spasm, and headache. However, the exact effect and the mechanism of Ke-teng-zi on the treatment of dermatitis is unclear. AIM OF THE STUDY: To elucidate the antipruritic effect and molecular mechanisms of Ke-teng-zi on the treatment of allergic contact dermatitis (ACD). MATERIALS AND METHODS: The main components of the n-butanol fraction of 70% ethanol extract from Ke-teng-zi (abbreviated as KB) were analyzed by HPLC. The chloroquine (CQ)-induced acute itch and squaraine dibutyl ester (SADBE)-induced ACD chronic itch in mice was established, and the TNF-α/IFN-γ stimulated Human keratinocytes (HaCaT) were used to evaluate the antipruritic and anti-inflammatory effects of KB. Behavioral tests, lesion scoring, and histology were also examined. The expression levels of molecules in MAPK and JAK/STAT3 pathways, the mRNA levels of chemokines and cytokines in both the skin of ACD mice and the HaCaT cells were detected by western blot and qPCR. Furthermore, whole-cell patch-clamp recordings in TRPA1-tranfected HEK293T cells were used to elucidate the effect of KB on TRPA1 channels. TRPA1 siRNA was used to evaluate the role of TRPA1 in the anti-inflammatory effect of KB in keratinocytes. RESULTS: The main compounds in KB could bind to the active sites of TRPA1 mainly through hydrogen bond and hydrophobic bond interactions. KB could inhibit the scratching behavior in CQ-induced acute itch, and the inhibitory effect of KB was blocked by TRPA1 inhibitor HC-030031. In addition, KB significantly decreased the scratching bouts of ACD mice, reduced the skin lesion scores, mast cells degranulation, and epidermal thickening, inhibited the production of inflammatory chemokines/cytokines and CGRP, and down-regulated the levels of p-ERK1/2, p-p38, and p-STAT3, compared to the ACD mice. Moreover, continuous application of KB induced the desensitization of TRPA1 channels. Also, KB inhibited the expression of p-ERK1/2, p-p38, and p-STAT3, and down-regulated the expression of inflammatory chemokines and cytokines in vitro, which were reversed by the TRPA1 siRNA. CONCLUSIONS: KB alleviated the pruritus and skin inflammation in ACD mice through TRPA1 channels desensitization and down-regulation of intracellular MAPK and JAK/STAT3 signaling pathways. Our results suggested that Ke-teng-zi is a potential drug for the treatment of inflammatory skin diseases such as ACD.


Assuntos
Antipruriginosos , Dermatite Alérgica de Contato , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Antipruriginosos/uso terapêutico , Quimiocinas/metabolismo , Citocinas/metabolismo , Dermatite Alérgica de Contato/tratamento farmacológico , Células HEK293 , Prurido , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Canal de Cátion TRPA1/metabolismo , Medicina Tradicional Chinesa , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
19.
Int J Biol Macromol ; 226: 1236-1247, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36442562

RESUMO

Laetiporus sulphureus is an edible and medicinal mushroom. A sulfated galactoglucan (SPS) was isolated by the papain method. Polysaccharides (PS) were isolated by hot water and ethanol precipitation. The medium molecular weight SPS of 100 to 1000 kDa accounted for over half of the SPS mixture. Fucose, galactose, glucose, and mannose were the major monosaccharides in SPS and PS. The amount of sulfate in SPS was 1.09 mmol/g. SPS showed inhibition of tumor necrosis factor-α (TNF-α) release and reversed IκB degradation in LPS-induced RAW264.7 macrophages. The suppression of TNF-α secretion by SPS was through inhibiting the phosphorylation of AKT/extracellular signal-regulated kinases (ERK), p38, and c-Jun N-terminal kinase (JNK). A purified SPS, named SPS-3, was proven to inhibit the LPS-induced phosphorylation of AKT, ERK, and p-38 in RAW264.7 cells. The suppression of interleukin 6 (IL-6) and transforming growth factor beta (TGFß) secretion by PS was through inhibiting LPS-induced phosphorylation of p-38 and TGF-ß receptor II (TGFRII) signaling pathways. This study demonstrates that the isolated SPS and PS from L. sulphureus possessed good anti-inflammatory activity for dietary supplements and functional food.


Assuntos
Lipopolissacarídeos , Sulfatos , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Anti-Inflamatórios/farmacologia , Polissacarídeos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo
20.
Phytother Res ; 37(2): 689-701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36245270

RESUMO

Gastric cancer (GC) is a malignancy with high morbidity and mortality. Chinese dragon's blood is a traditional Chinese medicine derived from the red resin of Dracaena cochinchinensis (Lour.) S. C. Chen. However, the antigastric cancer effect of Chinese dragon's blood has not yet been reported. Herein, we demonstrated that Chinese dragon's blood ethyl acetate extract (CDBEE) suppressed the proliferative and metastatic potential of human gastric cancer MGC-803 and HGC-27 cells. CDBEE suppressed epithelial-mesenchymal transition in MGC-803 and HGC-27 cells. Moreover, CDBEE induced apoptotic and autophagic cell death in MGC-803 and HGC-27 cells. The cytotoxicity of CDBEE in human gastric epithelial GES-1 cells was dramatically weaker than that in human gastric cancer cells. Mechanistically, the activation of the mitogen-activated protein kinase (MAPK) signalling pathway was involved in the growth inhibition of MGC-803 and HGC-27 cells by CDBEE. Additionally, CDBEE-induced autophagic cell death was mediated by downregulation of the mammalian target of rapamycin (mTOR)-Beclin1 signalling cascade and upregulation of the ATG3/ATG7-LC3 signalling cascade. Importantly, CDBEE exhibited potent anti-GC efficacy in vivo without obvious toxicity or side effects. Therefore, CDBEE may be a promising candidate drug for the treatment of gastric cancer, especially for GC patients with aberrant MAPK signalling or mTOR signalling.


Assuntos
Dracaena , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Proteína Beclina-1/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Sirolimo , Regulação para Baixo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Dracaena/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA